The Polynomial Method for Random Matrices

نویسندگان

  • N. Raj Rao
  • Alan Edelman
چکیده

We define a class of “algebraic” random matrices. These are random matrices for which the Stieltjes transform of the limiting eigenvalue distribution function is algebraic, i.e., it satisfies a (bivariate) polynomial equation. The Wigner and Wishart matrices whose limiting eigenvalue distributions are given by the semi-circle law and the Marčenko-Pastur law are special cases. Algebraicity of a random matrix sequence is shown to act as a certificate of the computability of the limiting eigenvalue density function. The limiting moments of algebraic random matrix sequences, when they exist, are shown to satisfy a finite depth linear recursion so that they may often be efficiently enumerated in closed form. In this article, we develop the mathematics of the polynomial method which allows us to describe the class of algebraic matrices by its generators and map the constructive approach we employ when proving algebraicity into a software implementation that is available for download in the form of the RMTool random matrix “calculator” package. Our characterization of the closure of algebraic probability distributions under free additive and multiplicative convolution operations allows us to simultaneously establish a framework for computational (non-commutative) “free probability” theory. We hope that the tools developed allow researchers to finally harness the power of the infinite random matrix theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the polynomial numerical hulls of matrices

In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.

متن کامل

Symbolic computation of the Duggal transform

Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...

متن کامل

Numerical Solution of Optimal Control of Time-varying Singular Systems via Operational Matrices

In this paper, a numerical method for solving the constrained optimal control of time-varying singular systems with quadratic performance index is presented. Presented method is based on Bernste in polynomials. Operational matrices of integration, differentiation and product are introduced and utilized to reduce the optimal control of time-varying singular problems to the solution of algebraic ...

متن کامل

A Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases

In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...

متن کامل

Sujet : Moments Method for Random Matrices with Applications to Wireless Communication

In this thesis, we focus on the analysis of the moments method, showing its importance in the application of random matrices to wireless communication. This study is conducted in the free probability framework. The concept of free convolution/deconvolution can be used to predict the spectrum of sums or products of random matrices which are asymptotically free. In this framework, we show that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008